Write $w(\xi, \eta)=u(x(\xi, \eta), y(\xi, \eta))$. We claim that w is a solution of a secondorder equation of the same type. Using the chain rule one finds that

$$
\begin{aligned}
& u_{x}=w_{\xi} \xi_{x}+w_{\eta} \eta_{x}, \\
& u_{y}=w_{\xi} \xi_{y}+w_{\eta} \eta_{y}, \\
& u_{x x}=w_{\xi \xi} \xi_{x}^{2}+2 w_{\xi \eta} \xi_{x} \eta_{x}+w_{\eta \eta} \eta_{x}^{2}+w_{\xi} \xi_{x x}+w_{\eta} \eta_{x x}, \\
& u_{x y}=w_{\xi \xi} \xi_{x} \xi_{y}+w_{\xi \eta}\left(\xi_{x} \eta_{y}+\xi_{y} \eta_{x}\right)+w_{\eta \eta} \eta_{x} \eta_{y}+w_{\xi} \xi_{x y}+w_{\eta} \eta_{x y}, \\
& u_{y y}=w_{\xi \xi} \xi_{y}^{2}+2 w_{\xi \eta} \xi_{y} \eta_{y}+w_{\eta \eta} \eta_{y}^{2}+w_{\xi} \xi_{y y}+w_{\eta} \eta_{y y},
\end{aligned}
$$

Substituting these formulas in (10), we see that w is satisfies the linear equation

$$
\begin{equation*}
\ell[w]=A w_{\xi \xi}+B w_{\xi \eta}+C w_{\eta \eta}+D w_{\xi}+E w_{\eta}+F w=G \tag{11}
\end{equation*}
$$

Where

$$
\begin{aligned}
& A(\xi, \eta)=a \xi_{x}^{2}+2 b \xi_{x} \xi_{y}+c \xi_{y}^{2}, \\
& B(\xi, \eta)=a \xi_{x} \eta_{x}+b\left(\xi_{x} \eta_{y}+\xi_{y} \eta_{x}\right)+c \xi_{y} \eta_{y}, \\
& C(\xi, \eta)=a \eta_{x}^{2}+2 b \eta_{x} \eta_{y}+c \eta_{y}^{2},
\end{aligned}
$$

Note: we do not need to compute the coefficients of the lower-order derivatives (D,E,F)
An elementary calculation shows that these coefficients satisfy the following matrix equation:

$$
\left(\begin{array}{ll}
A & B \\
B & C
\end{array}\right)=\left(\begin{array}{ll}
\xi_{x} & \xi_{y} \\
\eta_{x} & \eta_{y}
\end{array}\right)\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)\left(\begin{array}{cc}
\xi_{x} & \eta_{x} \\
\xi_{y} & \eta_{y}
\end{array},\right.
$$

Denote by J the Jacobian of the transformation. Taking the determinant of the two sides of the above matrix equation, we find

$$
-\delta(\ell)=A C-B^{2}=J^{2}\left(a c-b^{2}\right)=-J^{2} \delta(L)
$$

Therefore, the type of the equation is invariant under nonsingular transformations.
Definition 3.4 The canonical form of hyperbolic, parabolic and elliptic equations are

$$
\begin{aligned}
& \ell[w]=w_{\xi \eta}+\ell_{1}[w]=G(\xi, \eta) \\
& \ell[w]=w_{\xi \xi}+\ell_{1}[w]=G(\xi, \eta) \\
& \ell[w]=w_{\xi \xi}+w_{\eta \eta}+\ell_{1}[w]=G(\xi, \eta)
\end{aligned}
$$

where ℓ_{1} is a first-order linear differential operator, and G is a function.

Theorem: Suppose that (10) is hyperbolic in a domain D. There exists a coordinate system (ξ, η) in which the equation has the canonical form

$$
w_{\xi \eta}+\ell_{1}[w]=G(\xi, \eta)
$$

where $w(\xi, \eta)=u(x(\xi, \eta), y(\xi, \eta)), \quad \ell_{1}$ is a first-order linear differential operator, and G is a function which depends on (10).

Proof:

Without loss of generality, we may assume that $a(x, y) \neq 0$ for all $(x, y) \in D$. We need to find two functions $\xi=\xi(x, y), \eta=\eta(x, y)$ such that

$$
\begin{aligned}
& A(\xi, \eta)=a \xi_{x}^{2}+2 b \xi_{x} \xi_{y}+c \xi_{y}^{2}=0 \\
& C(\xi, \eta)=a \eta_{x}^{2}+2 b \eta_{x} \eta_{y}+c \eta_{y}^{2}=0
\end{aligned}
$$

The equation that was obtained for the function η is actually the same equation as for ξ; therefore, we need to solve only one equation. It is a first-order equation that is not quasilinear; but as a quadratic form in ξ it is possible to write it as a product of two linear terms

$$
\frac{1}{a}\left[a \xi_{x}+\left(b-\sqrt{b^{2}-a c}\right) \xi_{y}\right]\left[a \xi_{x}+\left(b+\sqrt{b^{2}-a c}\right) \xi_{y}\right]=0
$$

Therefore, we need to solve the following linear equations:

$$
\begin{align*}
& a \xi_{x}+\left(b-\sqrt{b^{2}-a c}\right) \xi_{y}=0 \\
& a \xi_{x}+\left(b+\sqrt{b^{2}-a c}\right) \xi_{y}=0
\end{align*}
$$

In order to obtain a nonsingular transformation $(\xi(x, y), \eta(x, y))$ we choose ξ to be a solution of (12\#) and η to be a solution of (13\#\#).The characteristic equations for (\#) are

$$
\frac{d x}{d t}=a, \quad \frac{d y}{d t}=b+\sqrt{b^{2}-a c}, \quad \frac{d \xi}{d t}=0
$$

Therefore, ξ is constant on each characteristic. The characteristics are solutions of the equation

$$
\frac{d y}{d x}=\frac{b+\sqrt{b^{2}-a c}}{a}
$$

The function η is constant on the characteristic determined by

$$
\frac{d y}{d x}=\frac{b-\sqrt{b^{2}-a c}}{a}
$$

Definition : The solutions of (\$) and (\$\$) are called the two families of the characteristics (or characteristic projections) of the equation $L[u]=g$.

Example: Consider the Tricomi equation:

$$
u_{x x}+x u_{y y}=0 \quad x<0
$$

Find a mapping $q=q(x, y), r=r(x, y)$ that transforms the equation into its canonical form, and present the equation in this coordinate system.

$$
\frac{d y}{d x}= \pm \sqrt{x} \Rightarrow q(x, y)=\frac{3}{2} y+(-x)^{\frac{3}{2}} \text { and } r(x, y)=\frac{3}{2} y-(-x)^{\frac{3}{2}}
$$

Define $v(q, r)=u(x, y)$. By the chain rule

$$
\begin{aligned}
& u_{x}=-\frac{3}{2}(-x)^{\frac{1}{2}} v_{q}+\frac{3}{2}(-x)^{\frac{1}{2}} v_{r} \quad u_{y}=\frac{3}{2}\left(v_{q}+v_{r}\right) \\
& u_{x x}=-\frac{9}{4} x v_{q q}-\frac{9}{4} x v_{r r}+\frac{9}{2} x v_{q r}+\frac{3}{4}(-x)^{\frac{-1}{2}}\left(v_{q}-v_{r}\right) \\
& u_{y y}=-\frac{9}{4}\left(v_{q q}+2 v_{q r}+v_{r r}\right)
\end{aligned}
$$

Substituting these expressions into the Tricomi equation we obtain

$$
u_{x x}+x u_{y y}=-9(q-r)^{\frac{2}{3}}\left(v_{q r}+\frac{v_{q}-v_{r}}{6(q-r)}\right)=0
$$

Ex: Consider the equation

$$
u_{x x}-2 \sin (x) u_{x y}-\cos (2 x) u_{y y}-\cos (x) u_{y}=0
$$

Find a coordinate system $s=s(x, y), t=t(x, y)$ that transforms the equation into its canonical form. Show that in this coordinate system the equation has the form $v_{s t}=0$, and find the general solution.

Theorem: Suppose that (10) is parabolic in a domain D. There exists a coordinate system (ξ, η) in which the equation has the canonical form $w_{\xi \xi}+\ell_{1}[w]=G(\xi, \eta)$ where $w(\xi, \eta)=u(x(\xi, \eta), y(\xi, \eta)), \quad \ell_{1}$ is a first-order linear differential operator, and G is a function which depends on (10).
Proof:
Ex : Prove that the equation $x^{2} u_{x x}-2 x y u_{x y}+y^{2} u_{y y}+x u_{x}+y u_{y}=0$ is parabolic and find its canonical form; find the general solution on the half-plane $x>0$.

Theorem: Suppose that (10) is elliptic in a domain D. There exists a coordinate $\operatorname{system}(\xi, \eta)$ in which the equation has the canonical form $w_{\xi \xi}+w_{\eta \eta}+\ell_{1}[w]=G(\xi, \eta)$ where $w(\xi, \eta)=u(x(\xi, \eta), y(\xi, \eta)), \quad \ell_{1}$ is a first-order linear differential operator, and G is a function which depends on (10).

Proof:

Ex: Consider the Tricomi equation: $u_{x x}+x u_{y y}=0 \quad x>0$
Find a mapping $q=q(x, y), r=r(x, y)$ that transforms the equation into its canonical form, and present the equation in this coordinate system.

